
A developer always 
pays his tech debts

Wesley Lomax & Jonathan Robbins



Going from legacy to a Helix compliant solution



Why should I make work for myself?
Raise the quality limit

Code decay

Short term pains for long term gains

Preempt serious rework

Align with the direction of the Industry

Improve as a developer

Undeveloping is fun!



What it all looked like



How the solution was structured



Figuring out what’s 
right for us

Membership Organisation and Trade 

Union

Enterprise solution

Team composition

Varied audiences

Delivering a progressive product



Where we wanted 
to be

Harden the foundations

Remove limitations of N Tier

Enable future phases

Sort daily headaches

Use modern solutions to problems

But also...



MAKE DEVELOPMENT GREAT AGAIN



Before we got 
started

Buy in

Robust branching strategy

Unit Test and Regression Test plans

A few Resharper licenses

Bravery!



What we 
considered

What is right for us

SOLID principles

Modular Design

Helix

Development standards

Content strategy

Design Patterns



How we went about it
1. Chose technologies, principles and design patterns 

2. Rewrote development guidelines

3. Completed a solution review

4. Audited the information architecture

5. Created a transformation backlog

6. Agreed an implementation approach



Stairway Pattern



How we began 
implementing the 

changes

Big Bang approach simply not 

possible

Phased approach

Features at a time

Boy Scout Rule



How we tested the commits
No Test or QA team!!

CI server builds every commit to every branch

Unit Tests are run

Code Coverage reports are generated



77
Days of technical debt



14
Days of technical debt



Amount of tech debt we’ve reduced
Technical debt rating - B Rating

Technical Debt at 7.41%

14 days of debt

Breaking Point 30 months

Technical debt rating - D

Technical Debt at 20.83%

77 days worth of debt

Breaking Point 3 months



So what it all looks like now





Let’s zoom into one of those



Our take aways from doing this
Know where you’re heading first

Don’t go blindly following Helix

Be careful of pulling code weeds

Talk in words clients can understand

Sitecore Powershell Extensions saves (personal)lives

You might wanna check in those deployment packages…

Your IoC not being a separate project may spoil your pretty dependency graph



TL;DL - How do I sort out my legacy solution?
Get the thumbs up

Figure out what is right for you

Decide how you want the implementation to look in 12 months

Find approaches and principles that can help you get there

Review the solution against all this to build a backlog

Agree how to implement the changes with minimum risk

Go break the site


